Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research

نویسندگان

  • Yeyin Shi
  • J. Alex Thomasson
  • Seth C. Murray
  • N. Ace Pugh
  • William L. Rooney
  • Sanaz Shafian
  • Nithya Rajan
  • Gregory Rouze
  • Cristine L. S. Morgan
  • Haly L. Neely
  • Aman Rana
  • Muthu V. Bagavathiannan
  • James Henrickson
  • Ezekiel Bowden
  • John Valasek
  • Jeff Olsenholler
  • Michael P. Bishop
  • Ryan Sheridan
  • Eric B. Putman
  • Sorin Popescu
  • Travis Burks
  • Dale Cope
  • Amir Ibrahim
  • Billy F. McCutchen
  • David D. Baltensperger
  • Robert V. Avant
  • Misty Vidrine
  • Chenghai Yang
چکیده

Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs)

Precision phenotyping, especially the use of image analysis, allows researchers to gain information on plant properties and plant health. Aerial image detection with unmanned aerial vehicles (UAVs) provides new opportunities in precision farming and precision phenotyping. Precision farming has created a critical need for spatial data on plant density. The plant number reflects not only the fina...

متن کامل

High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates

The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high res...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley

With the commercialization and increasing availability of Unmanned Aerial Vehicles (UAVs) multiple rotor copters have expanded rapidly in plant phenotyping studies with their ability to provide clear, high resolution images. As such, the traditional bottleneck of plant phenotyping has shifted from data collection to data processing. Fortunately, the necessarily controlled and repetitive design ...

متن کامل

Fuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path

At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016